A PROGRAM FOR CALCULATING Q VALUES UTILIZING A HEWLETT-PACKARD HP-67 CALCULATOR

T. Jochsberger Division of Pharmaceutics and Industrial Pharmacy. Arnold & Marie Schwartz College of Pharmacy and Health Sciences of Long Island University. Brooklyn, NY 11201

ABSTRACT

 Q_{10} values are used to make stability projections from kinetic data. A program to facilitate the computation of Q₁₀ values utilizing the Hewlett-Packard HP-67 calculator is presented. In addition, the program may be used to compute incremental changes of Q_{10} as a function of either temperature (dQ_{10}/dT) or activation energy (dQ_{10}/dE_{a}) .

INTRODUCTION

The usefulness of Q10 values in stability studies has long been recognized (1,2). Calculation of Q_{10} values, although not difficult, may be cumbersome. Estimates of $Q_{1,0}$ values at various temperatures and for various activation energies are available (2). We wish to present in this paper a program which, utilizing a Hewlett-Packard HP-67 calculator, facilitates the computation of Q10 values.

In addition, it has been pointed out (2) that Q_{10} values are a function of both temperature and activation energy. The program presented here may also be used for the computation of dQ_{10}/dT and dQ_{10}/dE_{g} values.

1537

0363-9045/83/0908-1537\$3.50/0

JOCHSBERGER 1538

DISCUSSION

Q₁₀ values are an expression of the change in reaction rate constants with a ten degree change in absolute temperature:

$$Q_{10} = k^{1}/k \qquad Eq.1$$

where k is the rate constant at ToK and k' is the rate constant at T + 10 °K. Clearly any temperature increment could be utilized and a corresponding "Q $_{\pi}$ " value could be calculated. However, it has been shown (2) that any such values are easily computed from Q10values.

From the Arrhenius relationship:

$$k = Ae^{-E_a/RT}$$
 Eq. 2

where A is a constant, E_{n} is the activation energy and R is the universal gas constant (1.987 cal/mole-deg) it may be demonstrated that:

$$Q_{10} = e^{E_a/R(1/T - 1/T')}$$
 Eq.3

where $T^{\dagger} = T + 10$

Substituting T + 10 for T' and differentiating equation 3 with repect to temperature yields, after expansion and simplification:

$$-dQ_{10}/dT = (20E_a/RT^3)e^{10E_a/RT^2}$$
 Eq.4

Since the value of the gas constant is 1.987, when the activation energy is measured in cal/mole, equation 4 simplifies to:

$$-dQ_{10}/dT = (10.1E_a/T^3)e^{5.0E_a/T^2}$$
 Eq.5

At a constant temperature Q_{10} is a function of activation energy. This relationship may be obtained by taking the derivative of Q_{10} with respect to $E_{\mathbf{g}}$ which, from equation 3 yields:

$$dQ_{10}/dE_a = (5.0/T^2)e^{5.0E}a/T^2$$
 Eq.6

It may be noted that Q10 values decrease with increasing temperature, but increase with increasing activation energy. This is due to the fact that at elevated temperatures a small change in temperature will have only a small effect on reaction rates. On the other hand, small changes in temperature will produce more dramatic

TABLE I

	Progr	am	Steps.	for	Calcu	ılatin	g Q 10.	<u>dQ₁₀/dT</u>	ar	<u>d dQ</u> 10/	dE _a
002	f LBL STO 1				023 024	9 8		0	45 46		
004	h RTN f LBL STO 2	В			025 026 027	+		0	47 48 49	1 X	
006	h RTN f LBL	С			028	h RTN		0	50	RCL 4	
800	RCL 1 h 1/x				030	RCL 1		0	52	h RTN f LBL E) •
010	STO 3 RCL 1				032 033	h 1/x RCL 2		0	55	RCL 1	
012 013	0				034 035	5		0	56 57	h 1/x 5	
	h 1/x CHS				036 037 038	g e ^x STO 4		0		STO 5 RCL 2	
	RCL 3				039	RCL 1		0	61 62	Х g e ^х	
020	RCL 2				042			0	64	X X	
021 022	1				043	RCL 2	!	U	65	h RTN	

differences in rates of reactions with higher activation energies. This could be important when estimating stability patterns based on Q10 values.

Table I presents the program steps required for the computations discussed above. Steps 001 through 006 are general steps for all three computations. Steps 007 through 028 calculate Q_{10} , 029 through 052 calculate dQ_{10}/dT and 053 through 065 calculate dQ_{10}/dE_a . The temperature ($^{\circ}$ K) is stored in register A and the activation energy (cal/ mole) is stored in register B to initialize the program. Then Q_{10} , dQ_{10}/dT and dQ_{10}/dE are found by pressing the keys C, D and E respectively.

ACKNOWLE DGEMENTS

The author would like to thank Dr. Lloyd Kennon for his helpful comments.

REFERENCES

1. A.P. Simonelli and D.S. Dresback, "Principles of Formulations of Parenteral Dosage Forms - Stability

1540 JOCHSBERGER

Considerations," in "Perspectives in Clinical Pharmacy," D.E. Francke and H.A.K. Whitney (Eds.), Drug Intelligence Publications, Hamilton, Illinois, 1972, pp.408-412.

 K.A. Connors, G.L. Amidon and L. Kennon, "Chemical Stability of Pharmaceuticals, A Handbook for Pharmacists," John Wiley and Sons, Inc., New York, New York, 1979, pp.22-27.

